
Manifold Sampling for Nonconvex Piecewise
Continuously Differentiable Functions

Jeffrey Larson

Stefan Wild, Kamil Khan, Matt Menickelly

Argonne National Laboratory

July 12, 2016

Problem Statement
We are interested in solving the problem:

minimize
x∈Rn

f (x) ≡ h(F (x))

where F : Rn → Rm, h : Rm → R,

and

I h is nonsmooth, piecewise linear, but has a known structure
(cheap to evaluate)

I F is smooth, nonlinear, but has a relatively unknown structure
(expensive to evaluate)

Though h is piecewise linear, F being nonlinear implies f can be
nonlinear

2 of 24.

Problem Statement
We are interested in solving the problem:

minimize
x∈Rn

f (x) ≡ h(F (x))

where F : Rn → Rm, h : Rm → R, and

I h is nonsmooth, piecewise linear, but has a known structure
(cheap to evaluate)

I F is smooth, nonlinear, but has a relatively unknown structure
(expensive to evaluate)

Though h is piecewise linear, F being nonlinear implies f can be
nonlinear

2 of 24.

Problem Statement
We are interested in solving the problem:

minimize
x∈Rn

f (x) ≡ h(F (x))

where F : Rn → Rm, h : Rm → R, and

I h is nonsmooth, piecewise linear, but has a known structure
(cheap to evaluate)

I F is smooth, nonlinear, but has a relatively unknown structure
(expensive to evaluate)

Though h is piecewise linear, F being nonlinear implies f can be
nonlinear

2 of 24.

Problem Statement
We are interested in solving the problem:

minimize
x∈Rn

f (x) ≡ h(F (x))

where F : Rn → Rm, h : Rm → R, and

I h is nonsmooth, piecewise linear, but has a known structure
(cheap to evaluate)

I F is smooth, nonlinear, but has a relatively unknown structure
(expensive to evaluate)

Though h is piecewise linear, F being nonlinear implies f can be
nonlinear

2 of 24.

Laser pulse propagating in a plasma channel
Want to determine the plasma channel properties so the maximum
difference in the laser intensity during propagation is minimized.

0 10 20 30 40 50 60
1

2

3

4

5

6

7

Time

In
te

n
s
it
y

Configuration 1
Configuration 2

f (x) = max {Fi (x)} −min {Fi (x)}
3 of 24.

Formulation

h(y) = max {y} −min {y}

y
1

y
2

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

4 of 24.

Formulation

h(F (x)) = max {sin(2x) + 1, cos(2x), x} −min {sin(2x) + 1, cos(2x), x}

0 0.5 1 1.5 2 2.5 3
0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

x

h
(F

(x
))

4 of 24.

Nonsmooth Optimization
Smooth optimization

I A descent direction, −∇f (x),
exists everywhere

I ∇f (x) = 0 is a necessary
optimality condition

I Difference approximation can
approximate ∇f (x)

Nonsmooth optimization

I Gradient may not exist at every
point

I Gradient often does not exist at the
optimal point

I Difference approximation of ∇f (x)
can be very bad

5 of 24.

Nonsmooth Optimization
Smooth optimization

I A descent direction, −∇f (x),
exists everywhere

I ∇f (x) = 0 is a necessary
optimality condition

I Difference approximation can
approximate ∇f (x)

Nonsmooth optimization

I Gradient may not exist at every
point

I Gradient often does not exist at the
optimal point

I Difference approximation of ∇f (x)
can be very bad

5 of 24.

Nonsmooth Optimization
Smooth optimization

I A descent direction, −∇f (x),
exists everywhere

I ∇f (x) = 0 is a necessary
optimality condition

I Difference approximation can
approximate ∇f (x)

Nonsmooth optimization

I Gradient may not exist at every
point

I Gradient often does not exist at the
optimal point

I Difference approximation of ∇f (x)
can be very bad

5 of 24.

Nonsmooth Optimization
Smooth optimization

I A descent direction, −∇f (x),
exists everywhere

I ∇f (x) = 0 is a necessary
optimality condition

I Difference approximation can
approximate ∇f (x)

Nonsmooth optimization

I Gradient may not exist at every
point

I Gradient often does not exist at the
optimal point

I Difference approximation of ∇f (x)
can be very bad

5 of 24.

Nonsmooth Optimization
Smooth optimization

I A descent direction, −∇f (x),
exists everywhere

I ∇f (x) = 0 is a necessary
optimality condition

I Difference approximation can
approximate ∇f (x)

Nonsmooth optimization

I Gradient may not exist at every
point

I Gradient often does not exist at the
optimal point

I Difference approximation of ∇f (x)
can be very bad

0 0.5 1 1.5 2 2.5 3
0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

x

h
(F

(x
))

5 of 24.

Nonsmooth Optimization
Smooth optimization

I A descent direction, −∇f (x),
exists everywhere

I ∇f (x) = 0 is a necessary
optimality condition

I Difference approximation can
approximate ∇f (x)

Nonsmooth optimization

I Gradient may not exist at every
point

I Gradient often does not exist at the
optimal point

I Difference approximation of ∇f (x)
can be very bad

0 0.5 1 1.5 2 2.5 3
0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

x

h
(F

(x
))

5 of 24.

Nonsmooth Optimization
Smooth optimization

I A descent direction, −∇f (x),
exists everywhere

I ∇f (x) = 0 is a necessary
optimality condition

I Difference approximation can
approximate ∇f (x)

Nonsmooth optimization

I Gradient may not exist at every
point

I Gradient often does not exist at the
optimal point

I Difference approximation of ∇f (x)
can be very bad

0 0.5 1 1.5 2 2.5 3
0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

x

h
(F

(x
))

5 of 24.

Nonsmooth Optimization
Smooth optimization

I A descent direction, −∇f (x),
exists everywhere

I ∇f (x) = 0 is a necessary
optimality condition

I Difference approximation can
approximate ∇f (x)

Nonsmooth optimization

I Gradient may not exist at every
point

I Gradient often does not exist at the
optimal point

I Difference approximation of ∇f (x)
can be very bad

Just running a smooth algorithm on a nonsmooth problem may not
converge, or may converge to a nonstationary point.

5 of 24.

A generalized derivative

Definition
For locally Lipschitz continuous functions f : Rn → R, the generalized
Clarke subgradient of f at a point x ∈ Rn is:

∂f (x) = conv
{
ξ ∈ Rn : ξ = lim

x i→x
∇f (x i) and ∇f (x i) exists at all x i

}
where conv (·) denotes the convex hull of a set.

6 of 24.

A generalized derivative

0 0.5 1 1.5 2 2.5 3
0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

x

h
(F

(x
))

7 of 24.

A generalized derivative

x
1

x
2

||x||
1

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

∂ ‖[0, 0.5]‖1 = conv {[1, 1], [−1, 1]}

7 of 24.

A generalized derivative

I If f is locally Lipschitz continuous and differentiable at x ,
∇f (x) ∈ ∂f (x).

I If f is locally Lipschitz continuous and continuously differentiable at x ,
∇f (x) = ∂f (x).

I 0 ∈ ∂f (x) is a necessary optimality condition for locally Lipschitz
continuous f .

8 of 24.

A generalized derivative

I If f is locally Lipschitz continuous and differentiable at x ,
∇f (x) ∈ ∂f (x).

I If f is locally Lipschitz continuous and continuously differentiable at x ,
∇f (x) = ∂f (x).

I 0 ∈ ∂f (x) is a necessary optimality condition for locally Lipschitz
continuous f .

8 of 24.

A generalized derivative

I If f is locally Lipschitz continuous and differentiable at x ,
∇f (x) ∈ ∂f (x).

I If f is locally Lipschitz continuous and continuously differentiable at x ,
∇f (x) = ∂f (x).

I 0 ∈ ∂f (x) is a necessary optimality condition for locally Lipschitz
continuous f .

8 of 24.

Steepest descent can have trouble. . .

f (x , y) = max
{
−

5
2
,±2x + 3y ,±5x + 2y

}
Piecewise affine, convex function.

9 of 24.

Steepest descent can have trouble. . .

x

y

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

0

2

4

6

8

10

12

14

16

18

20

10 of 24.

Steepest descent can have trouble. . .

x

y

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

0

2

4

6

8

10

12

14

16

18

20

Steepest descent with exact line search started from any point on the
diagonal lines will converge to (0, 0).

10 of 24.

Steepest descent can have trouble. . .

x

y

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

0

2

4

6

8

10

12

14

16

18

20

Steepest descent with exact line search started from any point above
the diagonal lines will converge to (0, 0).

10 of 24.

Steepest descent can have trouble. . .

x

y

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

0

2

4

6

8

10

12

14

16

18

20

Steepest descent with inexact line search (producing points close to the
diagonal) started from any point above the diagonal lines will converge
to (0, 0).

10 of 24.

Steepest descent can have trouble. . .

x

y

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

0

2

4

6

8

10

12

14

16

18

20

Descent (with directions sufficiently close to steepest) with inexact line
search (producing points close to the diagonal) started from any point
above the diagonal lines will converge to (0, 0).

10 of 24.

Subgradient methods
Approaches for nonsmooth optimization

xk+1 = xk + αkξ
k

where ξk is some element in ∂f (xk),

∞∑
k=0

αk =∞, and
∞∑

k=0

α2
k =∞.

I Not a descent method because the step sizes are fixed.

I Not a descent method because ξk may not be a descent direction.

11 of 24.

Subgradient methods
Approaches for nonsmooth optimization

xk+1 = xk + αkξ
k

where ξk is some element in ∂f (xk),
∞∑

k=0

αk =∞,

and
∞∑

k=0

α2
k =∞.

I Not a descent method because the step sizes are fixed.

I Not a descent method because ξk may not be a descent direction.

11 of 24.

Subgradient methods
Approaches for nonsmooth optimization

xk+1 = xk + αkξ
k

where ξk is some element in ∂f (xk),
∞∑

k=0

αk =∞, and
∞∑

k=0

α2
k =∞.

I Not a descent method because the step sizes are fixed.

I Not a descent method because ξk may not be a descent direction.

11 of 24.

Subgradient methods
Approaches for nonsmooth optimization

xk+1 = xk + αkξ
k

where ξk is some element in ∂f (xk),
∞∑

k=0

αk =∞, and
∞∑

k=0

α2
k =∞.

I Not a descent method because the step sizes are fixed.

I Not a descent method because ξk may not be a descent direction.

11 of 24.

Subgradient methods
Approaches for nonsmooth optimization

xk+1 = xk + αkξ
k

where ξk is some element in ∂f (xk),
∞∑

k=0

αk =∞, and
∞∑

k=0

α2
k =∞.

I Not a descent method because the step sizes are fixed.

I Not a descent method because ξk may not be a descent direction.

11 of 24.

Gradient Sampling
Approaches for nonsmooth optimization

Theorem (Rademacher)

If S ⊂ Rn is open and f : S → R is locally Lipschitz on S , then f is
differentiable almost everywhere on S .

12 of 24.

Gradient Sampling
Approaches for nonsmooth optimization
1. Approximate ∂f (xk) by sampling m ≥ n + 1 points xk,j in B(xk , εk). Set

G k = conv
{
∇f (xk,1), . . . ,∇f (xk,m)

}

2. Set ξk to be the minimum norm element in G k .

3. Set αk to be the smallest power s of γ ∈ (0, 1) satisfying

f (xk + γsξk) < f (xk)− βγs
∥∥ξk
∥∥

4. If ∇f (xk + αkξ
k) exists, xk+1 = xk + αkξ

k .
Else, find a point in x̂ ∈ B(xk , εk) satisfying

f (x̂k + γsξk) < f (xk)− βαk
∥∥ξk
∥∥

and set xk+1 = x̂k + αkξ
k .

I Iterates must not be at points of nondifferentiability
I A lot of sampling may be required

13 of 24.

Gradient Sampling
Approaches for nonsmooth optimization
1. Approximate ∂f (xk) by sampling m ≥ n + 1 points xk,j in B(xk , εk). Set

G k = conv
{
∇f (xk,1), . . . ,∇f (xk,m)

}
2. Set ξk to be the minimum norm element in G k .

3. Set αk to be the smallest power s of γ ∈ (0, 1) satisfying

f (xk + γsξk) < f (xk)− βγs
∥∥ξk
∥∥

4. If ∇f (xk + αkξ
k) exists, xk+1 = xk + αkξ

k .
Else, find a point in x̂ ∈ B(xk , εk) satisfying

f (x̂k + γsξk) < f (xk)− βαk
∥∥ξk
∥∥

and set xk+1 = x̂k + αkξ
k .

I Iterates must not be at points of nondifferentiability
I A lot of sampling may be required

13 of 24.

Gradient Sampling
Approaches for nonsmooth optimization
1. Approximate ∂f (xk) by sampling m ≥ n + 1 points xk,j in B(xk , εk). Set

G k = conv
{
∇f (xk,1), . . . ,∇f (xk,m)

}
2. Set ξk to be the minimum norm element in G k .

3. Set αk to be the smallest power s of γ ∈ (0, 1) satisfying

f (xk + γsξk) < f (xk)− βγs
∥∥ξk
∥∥

4. If ∇f (xk + αkξ
k) exists, xk+1 = xk + αkξ

k .
Else, find a point in x̂ ∈ B(xk , εk) satisfying

f (x̂k + γsξk) < f (xk)− βαk
∥∥ξk
∥∥

and set xk+1 = x̂k + αkξ
k .

I Iterates must not be at points of nondifferentiability
I A lot of sampling may be required

13 of 24.

Gradient Sampling
Approaches for nonsmooth optimization
1. Approximate ∂f (xk) by sampling m ≥ n + 1 points xk,j in B(xk , εk). Set

G k = conv
{
∇f (xk,1), . . . ,∇f (xk,m)

}
2. Set ξk to be the minimum norm element in G k .

3. Set αk to be the smallest power s of γ ∈ (0, 1) satisfying

f (xk + γsξk) < f (xk)− βγs
∥∥ξk
∥∥

4. If ∇f (xk + αkξ
k) exists, xk+1 = xk + αkξ

k .
Else, find a point in x̂ ∈ B(xk , εk) satisfying

f (x̂k + γsξk) < f (xk)− βαk
∥∥ξk
∥∥

and set xk+1 = x̂k + αkξ
k .

I Iterates must not be at points of nondifferentiability
I A lot of sampling may be required

13 of 24.

Gradient Sampling
Approaches for nonsmooth optimization
1. Approximate ∂f (xk) by sampling m ≥ n + 1 points xk,j in B(xk , εk). Set

G k = conv
{
∇f (xk,1), . . . ,∇f (xk,m)

}
2. Set ξk to be the minimum norm element in G k .

3. Set αk to be the smallest power s of γ ∈ (0, 1) satisfying

f (xk + γsξk) < f (xk)− βγs
∥∥ξk
∥∥

4. If ∇f (xk + αkξ
k) exists, xk+1 = xk + αkξ

k .
Else, find a point in x̂ ∈ B(xk , εk) satisfying

f (x̂k + γsξk) < f (xk)− βαk
∥∥ξk
∥∥

and set xk+1 = x̂k + αkξ
k .

I Iterates must not be at points of nondifferentiability

I A lot of sampling may be required

13 of 24.

Gradient Sampling
Approaches for nonsmooth optimization
1. Approximate ∂f (xk) by sampling m ≥ n + 1 points xk,j in B(xk , εk). Set

G k = conv
{
∇f (xk,1), . . . ,∇f (xk,m)

}
2. Set ξk to be the minimum norm element in G k .

3. Set αk to be the smallest power s of γ ∈ (0, 1) satisfying

f (xk + γsξk) < f (xk)− βγs
∥∥ξk
∥∥

4. If ∇f (xk + αkξ
k) exists, xk+1 = xk + αkξ

k .
Else, find a point in x̂ ∈ B(xk , εk) satisfying

f (x̂k + γsξk) < f (xk)− βαk
∥∥ξk
∥∥

and set xk+1 = x̂k + αkξ
k .

I Iterates must not be at points of nondifferentiability
I A lot of sampling may be required

13 of 24.

Trust region methods
Smooth case

1. Build a model mk of f at xk , for example

mk(p) = f (xk) +∇f (xk)Tp +
1
2
pT∇2f (xk)p

2. Find sk that minimizes mk subject to
∥∥sk
∥∥ ≤ ∆k .

3. Evaluate

ρk =
f (xk)− f (xk + sk)

m(xk)−m(xk + sk)

4. If ρk > η > 0, xk+1 = xk + sk , ∆k+1 = γinc∆k .
Else xk+1 = xk , ∆k+1 = γdec∆k .

14 of 24.

Trust region methods
Smooth case

1. Build a model mk of f at xk , for example

mk(p) = f (xk) +∇f (xk)Tp +
1
2
pT∇2f (xk)p

2. Find sk that minimizes mk subject to
∥∥sk
∥∥ ≤ ∆k .

3. Evaluate

ρk =
f (xk)− f (xk + sk)

m(xk)−m(xk + sk)

4. If ρk > η > 0, xk+1 = xk + sk , ∆k+1 = γinc∆k .
Else xk+1 = xk , ∆k+1 = γdec∆k .

14 of 24.

Trust region methods
Smooth case

1. Build a model mk of f at xk , for example

mk(p) = f (xk) +∇f (xk)Tp +
1
2
pT∇2f (xk)p

2. Find sk that minimizes mk subject to
∥∥sk
∥∥ ≤ ∆k .

3. Evaluate

ρk =
f (xk)− f (xk + sk)

m(xk)−m(xk + sk)

4. If ρk > η > 0, xk+1 = xk + sk , ∆k+1 = γinc∆k .
Else xk+1 = xk , ∆k+1 = γdec∆k .

14 of 24.

Trust region methods
Smooth case

1. Build a model mk of f at xk , for example

mk(p) = f (xk) +∇f (xk)Tp +
1
2
pT∇2f (xk)p

2. Find sk that minimizes mk subject to
∥∥sk
∥∥ ≤ ∆k .

3. Evaluate

ρk =
f (xk)− f (xk + sk)

m(xk)−m(xk + sk)

4. If ρk > η > 0, xk+1 = xk + sk , ∆k+1 = γinc∆k .
Else xk+1 = xk , ∆k+1 = γdec∆k .

14 of 24.

Trust region methods
Smooth case

−5 −4 −3 −2 −1 0 1 2 3 4 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

15 of 24.

Trust region methods
Smooth case

�
�
�
�

−5 −4 −3 −2 −1 0 1 2 3 4 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

15 of 24.

Trust region methods
Smooth case

�
�
�
�

−5 −4 −3 −2 −1 0 1 2 3 4 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

15 of 24.

Trust region methods
Smooth case

�
�
�
�

−5 −4 −3 −2 −1 0 1 2 3 4 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

15 of 24.

Trust region methods
Smooth case

�
�
�
�

−5 −4 −3 −2 −1 0 1 2 3 4 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

15 of 24.

Trust region methods
Smooth case

�
�
�
�

−5 −4 −3 −2 −1 0 1 2 3 4 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

15 of 24.

Trust region methods
Smooth case

�
�
�
�

−5 −4 −3 −2 −1 0 1 2 3 4 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

15 of 24.

Trust region methods
Smooth case

�
�
�
�

−5 −4 −3 −2 −1 0 1 2 3 4 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

15 of 24.

Trust region methods
Smooth case

�
�
�
�

−5 −4 −3 −2 −1 0 1 2 3 4 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

15 of 24.

Trust region methods
Smooth case

�
�
�
�

−5 −4 −3 −2 −1 0 1 2 3 4 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

15 of 24.

Traditional ρ test
Smooth Case

A model m sufficiently approximates f near x if

|f (x + s)−m(x + s)| ≤ c1∆2 ∀s ∈ B(0,∆)
‖∇f (x + s)−∇m(x + s)‖ ≤ c2∆ ∀s ∈ B(0,∆),

with c1 and c2 independent of ∆ and x .

16 of 24.

Traditional ρ test
Smooth Case

A model m sufficiently approximates f near x if

|f (x + s)−m(x + s)| ≤ c1∆2 ∀s ∈ B(0,∆)
‖∇f (x + s)−∇m(x + s)‖ ≤ c2∆ ∀s ∈ B(0,∆),

with c1 and c2 independent of ∆ and x .

ρk =
f (xk)− f (xk + sk)

m(xk)−m(xk + sk)

16 of 24.

Traditional ρ test
Smooth Case

A model m sufficiently approximates f near x if

|f (x + s)−m(x + s)| ≤ c1∆2 ∀s ∈ B(0,∆)
‖∇f (x + s)−∇m(x + s)‖ ≤ c2∆ ∀s ∈ B(0,∆),

with c1 and c2 independent of ∆ and x .

We want ∣∣∣∣ f (xk)− f (xk + sk)

m(xk)−m(xk + sk)
− 1
∣∣∣∣ ≤ c∆k

16 of 24.

Traditional ρ test
Smooth Case

A model m sufficiently approximates f near x if

|f (x + s)−m(x + s)| ≤ c1∆2 ∀s ∈ B(0,∆)
‖∇f (x + s)−∇m(x + s)‖ ≤ c2∆ ∀s ∈ B(0,∆),

with c1 and c2 independent of ∆ and x .

We want∣∣∣∣ f (xk)−m(xk) + m(xk + sk)− f (xk + sk)

m(xk)−m(xk + sk)

∣∣∣∣ ≈ c1∆2
k + c1∆2

k

‖∇m(x)‖∆k
≈ c3∆k

16 of 24.

A new ρ test
Composite nonsmooth case

For nonsmooth functions, we do not get this.
If xk and xk + sk are on different sides of the absolute value kink,

‖∇f (x + s)−∇m(x + s)‖ = 2

17 of 24.

A new ρ test
Composite nonsmooth case

But if we include information at both xk and xk + sk when deciding on
sk , then we can ensure our model accurately approximates f on
conv

{
xk , xk + sk

}
.

18 of 24.

A new ρ test
Composite nonsmooth case

But if we include information at both xk and xk + sk when deciding on
sk , then we can ensure our model accurately approximates f on
conv

{
xk , xk + sk

}
.

18 of 24.

A new ρ test
Composite nonsmooth case

Let hx and hs be the affine functions active at F (xk) and F (xk + sk),
respectively. Then there are three cases.

19 of 24.

A new ρ test
Composite nonsmooth case

Let hx and hs be the affine functions active at F (xk) and F (xk + sk),
respectively. Then there are three cases.

hx (F (x)) ≥ hs(F (x))

 F(x) F(x+s)

h
(F

(x
))

h
s

19 of 24.

A new ρ test
Composite nonsmooth case

Let hx and hs be the affine functions active at F (xk) and F (xk + sk),
respectively. Then there are three cases.

hx (F (x)) ≥ hs(F (x))

 F(x) F(x+s)

h
(F

(x
))

h
s

ρk =
hs(F (xk))− f (xk + sk)

〈−sk ,∇M(xk)∇hs(F (xk))〉 .

19 of 24.

A new ρ test
Composite nonsmooth case

Let hx and hs be the affine functions active at F (xk) and F (xk + sk),
respectively. Then there are three cases.

hx (F (x + s)) ≥ hs(F (x + s))

 F(x) F(x+s)

h
(F

(x
))

h
x

19 of 24.

A new ρ test
Composite nonsmooth case

Let hx and hs be the affine functions active at F (xk) and F (xk + sk),
respectively. Then there are three cases.

hx (F (x + s)) ≥ hs(F (x + s))

 F(x) F(x+s)

h
(F

(x
))

h
x

ρk =
f (xk)− hx (F (xk + sk))

〈−sk ,∇M(xk)∇hx (F (xk))〉 .

19 of 24.

A new ρ test
Composite nonsmooth case

Let hx and hs be the affine functions active at F (xk) and F (xk + sk),
respectively. Then there are three cases.

hx (F (x)) ≤ hs(F (x)) and hx (F (x)) ≤ hs(F (x))

 F(x) F(x+s)

h
(F

(x
))

h
m

19 of 24.

A new ρ test
Composite nonsmooth case

Let hx and hs be the affine functions active at F (xk) and F (xk + sk),
respectively. Then there are three cases.

hx (F (x)) ≤ hs(F (x)) and hx (F (x)) ≤ hs(F (x))

 F(x) F(x+s)

h
(F

(x
))

h
m

ρk =
hm(F (xk))− hm(F (xk + sk))

〈−sk ,∇M(xk)∇hm(F (xk))〉 .

19 of 24.

A new ρ test
Composite nonsmooth case

Let hx and hs be the affine functions active at F (xk) and F (xk + sk),
respectively. Then there are three cases.

hx (F (x)) ≤ hs(F (x)) and hx (F (x)) ≤ hs(F (x))

 F(x) F(x+s)

h
(F

(x
))

h
m

ρk =
hm(F (xk))− hm(F (xk + sk))

〈−sk ,∇M(xk)∇hm(F (xk))〉 .

19 of 24.

Trust region methods
Composite nonsmooth case

1. Build a model mFi
k of Fi at xk .

2. Use ∇mFi to form ∇M(x) and build a set of generators G k . Set ξk to
be the minimum norm element in G k .

3. Build a model of f at xk with a gradient ξk and minimize that over
B(xk ,∆k) to obtain xk + sk and evaluate h(F (xk + sk)).

4. Ensure the correct manifolds are in G k , depending on the case. Either
add them to G k and go to 2, or calculate ρk .

5. If ρk > η > 0, xk+1 = xk + sk , ∆k+1 = γinc∆k .
Else xk+1 = xk , ∆k+1 = γdec∆k .

20 of 24.

Trust region methods
Composite nonsmooth case

1. Build a model mFi
k of Fi at xk .

2. Use ∇mFi to form ∇M(x) and build a set of generators G k . Set ξk to
be the minimum norm element in G k .

3. Build a model of f at xk with a gradient ξk and minimize that over
B(xk ,∆k) to obtain xk + sk and evaluate h(F (xk + sk)).

4. Ensure the correct manifolds are in G k , depending on the case. Either
add them to G k and go to 2, or calculate ρk .

5. If ρk > η > 0, xk+1 = xk + sk , ∆k+1 = γinc∆k .
Else xk+1 = xk , ∆k+1 = γdec∆k .

20 of 24.

Generator set

G k =
⋃

i∈Ih(F (xk))

{
∇M(xk)∇hi (F (xk))

}
where Ih(F (xk)) is the set of indices for the piecewise affine parts hi

that define h and that are active at F (xk).

Or, given a set of points Y =
{
xk , y2, . . . , yp

}
⊂ B(xk ,∆k) ,

Gk =
⋃
y∈Y

⋃
i∈Ih(F (y))

{
∇M(xk)∇hi (F (y))

}

21 of 24.

Generator set

G k =
⋃

i∈Ih(F (xk))

{
∇M(xk)∇hi (F (xk))

}
where Ih(F (xk)) is the set of indices for the piecewise affine parts hi

that define h and that are active at F (xk).

Or, given a set of points Y =
{
xk , y2, . . . , yp

}
⊂ B(xk ,∆k) ,

Gk =
⋃
y∈Y

⋃
i∈Ih(F (y))

{
∇M(xk)∇hi (F (y))

}

21 of 24.

Generator set

x
1

x
2

||x||
1

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

22 of 24.

Generator set

x

y

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

0

2

4

6

8

10

12

14

16

18

20

22 of 24.

Trust region methods
Composite nonsmooth case

1. Build a model mFi
k of Fi at xk .

2. Use ∇mFi to form ∇M(x) and build a set of generators G k . Set ξk to
be the minimum norm element in G k .

3. Build a model of f at xk with a gradient ξk and minimize that over
B(xk ,∆k) to obtain xk + sk and evaluate h(F (xk + sk)).

4. Ensure the correct manifolds are in G k , depending on the case. Either
add them to G k and go to 2, or calculate ρk .

5. If ρk > η > 0, xk+1 = xk + sk , ∆k+1 = γinc∆k .
Else xk+1 = xk , ∆k+1 = γdec∆k .

23 of 24.

Trust region methods
Composite nonsmooth case

1. Build a model mFi
k of Fi at xk .

2. Use ∇mFi to form ∇M(x) and build a set of generators G k . Set ξk to
be the minimum norm element in G k .

3. Build a model of f at xk with a gradient ξk and minimize that over
B(xk ,∆k) to obtain xk + sk and evaluate h(F (xk + sk)).

4. Ensure the correct manifolds are in G k , depending on the case. Either
add them to G k and go to 2, or calculate ρk .

5. If ρk > η > 0, xk+1 = xk + sk , ∆k+1 = γinc∆k .
Else xk+1 = xk , ∆k+1 = γdec∆k .

23 of 24.

Trust region methods
Composite nonsmooth case

1. Build a model mFi
k of Fi at xk .

2. Use ∇mFi to form ∇M(x) and build a set of generators G k . Set ξk to
be the minimum norm element in G k .

3. Build a model of f at xk with a gradient ξk and minimize that over
B(xk ,∆k) to obtain xk + sk and evaluate h(F (xk + sk)).

4. Ensure the correct manifolds are in G k , depending on the case. Either
add them to G k and go to 2, or calculate ρk .

5. If ρk > η > 0, xk+1 = xk + sk , ∆k+1 = γinc∆k .
Else xk+1 = xk , ∆k+1 = γdec∆k .

23 of 24.

Trust region methods
Composite nonsmooth case

1. Build a model mFi
k of Fi at xk .

2. Use ∇mFi to form ∇M(x) and build a set of generators G k . Set ξk to
be the minimum norm element in G k .

3. Build a model of f at xk with a gradient ξk and minimize that over
B(xk ,∆k) to obtain xk + sk and evaluate h(F (xk + sk)).

4. Ensure the correct manifolds are in G k , depending on the case. Either
add them to G k and go to 2, or calculate ρk .

5. If ρk > η > 0, xk+1 = xk + sk , ∆k+1 = γinc∆k .
Else xk+1 = xk , ∆k+1 = γdec∆k .

23 of 24.

Conclusions

I Nonsmooth problems appear in many places and motivate active
optimization research.
See: MS76 Wed. 10:30 AM – 12:30 PM, BCEC Room 253C:
Sensitivity Analysis and Optimality Conditions in Nonsmooth Problems.

I Functions of the form h(F (x)) with piecewise linear h encompass a
large class of nonsmooth f .

I Often, the nonsmoothness has a known form. Exploiting this can be
beneficial to performance.
Larson, Menickelly, Wild. “Manifold Sampling for L1 Nonconvex
Optimization.”
See: IT5 Wed. 8:30 AM – 9:15 AM, Grand Ballroom: Beyond the
Black Box in Derivative-Free and Simulation Based Optimization.

24 of 24.

Conclusions

I Nonsmooth problems appear in many places and motivate active
optimization research.
See: MS76 Wed. 10:30 AM – 12:30 PM, BCEC Room 253C:
Sensitivity Analysis and Optimality Conditions in Nonsmooth Problems.

I Functions of the form h(F (x)) with piecewise linear h encompass a
large class of nonsmooth f .

I Often, the nonsmoothness has a known form. Exploiting this can be
beneficial to performance.
Larson, Menickelly, Wild. “Manifold Sampling for L1 Nonconvex
Optimization.”
See: IT5 Wed. 8:30 AM – 9:15 AM, Grand Ballroom: Beyond the
Black Box in Derivative-Free and Simulation Based Optimization.

24 of 24.

Conclusions

I Nonsmooth problems appear in many places and motivate active
optimization research.
See: MS76 Wed. 10:30 AM – 12:30 PM, BCEC Room 253C:
Sensitivity Analysis and Optimality Conditions in Nonsmooth Problems.

I Functions of the form h(F (x)) with piecewise linear h encompass a
large class of nonsmooth f .

I Often, the nonsmoothness has a known form. Exploiting this can be
beneficial to performance.
Larson, Menickelly, Wild. “Manifold Sampling for L1 Nonconvex
Optimization.”
See: IT5 Wed. 8:30 AM – 9:15 AM, Grand Ballroom: Beyond the
Black Box in Derivative-Free and Simulation Based Optimization.

24 of 24.

